Skocz do zawartości

Aktywacja nowych użytkowników
Zakazane produkcje

  • advertisement_alt
  • advertisement_alt
  • advertisement_alt

Znajdź zawartość

Wyświetlanie wyników dla tagów 'Theorem' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • DarkSiders
    • Regulamin
    • Dołącz do Ekipy forum jako
    • Ogłoszenia
    • Propozycje i pytania
    • Help
    • Poradniki / Tutoriale
    • Wszystko o nas
  • Poszukiwania / prośby
    • Generowanie linków
    • Szukam
  • DSTeam no Limits (serwery bez limitów!)
  • Download
    • Kolekcje
    • Filmy
    • Muzyka
    • Gry
    • Programy
    • Ebooki
    • GSM
    • Erotyka
    • Inne
  • Hydepark
  • Archiwum
  • UPandDOWN-Lader Tematy

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


AIM


MSN


Website URL


ICQ


Yahoo


Jabber


Skype


AIM


MSN


Website URL


ICQ


Yahoo


Jabber


Skype


Gadu Gadu


Skąd


Interests


Interests


Polecający

Znaleziono 3 wyniki

  1. Free Download Applied Bayes' Theorem And Naive Bayes Classifiers Published 10/2024 MP4 | Video: h264, 1920x1080 | Audio: AAC, 44.1 KHz Language: English | Size: 3.49 GB | Duration: 14h 7m Learn the fundamentals to better develop or acquire such Machine Learning Methods What you'll learn Detailed and fundamental probability principles, rules and procedures The Confused Matrix and its KPI's to be used as an evaluation of Naïve Bayes Classifier The Variant of Confused Matrices when datasets have multiple labels in their class or multiple classes The theory and principles behind the Bayes' Theorem How to develop the inference procedures in Bayes' Theorem using vertical and horizontal tables, contingency tables and decision trees The theoretical basis of Naïve Bayes Classifier Categorical Naïve Bayes Classifiers Laplace Smoothing Correction and M-Estimates Continuous Naïve Bayes Classifiers based on Gaussian distributions Continuous Naïve Bayes Classifiers based on non-Gaussian distributions (in this case, the Beta Distribution) The Beta Distribution and how to derive its parameters from our data The four discrete distributions in use in the Bayes' Theorem: Categorical, Bernoulli, Binomial and Multinomial Bernoulli Naïve Bayes Classifiers Multinomial Naïve Bayes Classifiers Weighted Naïve Bayes Classifiers Complemented Naïve Bayes Classifiers Entropy and Information Gain for better classification The Kononenko Information Gain and its application in Naïve Bayes Classifiers The Log Odds Ratio and its application in Naïve Bayes Classifiers The Kernel Density Estimates and its application in Naïve Bayes Classifier The optimization of the bandwidth, h, in the Kernel Density Estimates Requirements A working knowledge of Excel A beginner's knowledge of VBA (in Excel) No Python or R are needed All statistical methods will be presented in the course Description A) The Purpose of the CourseMost courses on this subject are aimed at Machine Learning and Data Science experts. Often, they are presented for use with specialized development platforms or even as part of advanced off-the-shelf applications. On the other hand, the Bayes' Theorem and its applications are based on statistical principles and concept not often clearly explained.The purpose of this course is educational. The techniques, algorithms and procedures presented in this course aim more at making machine learning methods based on the Theorem easier to understand as opposed to getting used.The Bayes' Theorem is is one of those theorems where we can apply the proverb: "Still water is deep". The Theorem was developed in an article by Thomas Bayes in 1763. In due course, it found itself being used in a wide variety of statistical applications. The Theorem itself was an application of inference. From there on, and specifically with the advent of Machine Learning algorithms, the Theorem was extended to be the core of a wide variety of applications such as Classification, Networks and Optimization.The Theorem and its applications are best developed using specialized programming environments. This is due to the mere fact that the applications of the Theorem require the handling of large data and performance intensive environments.B) So, why do we Present a Course based on Excel?Analysts require the use and the development of such applications have the following environments available to them:· Off the shelf applications, ready-made and commercially available.· Open source or free integrated development environments (IDE) that host a large number of scientific and statistical libraries to use in such applicationsIn both cases, the Analyst is faced with an insurmountable learning curve, often not climbable at all. Whether the objective is to use off-the-shelf products or to develop their own applications, learning the methods in a machine learning environment is not possible via these two environments.The course will then use Excel specifically for educational purposes and not as a machine learning tool. Excel is known by everyone, and if not, it is easy to learn. Excel is highly flexible in terms of exposing how things work. The course will then exploit such facilities to expose to the Analyst in a common sense and step-by-step manner the basis and procedures of these algorithms.B) What Does the Course Cover?The course is made up of 5 major sections preceded by a short introduction.Section 1: Introducing the CourseThis section consists of one lecture that presents the objectives of the course, its structure and resources as well as what to expect and what not to expect.Section 2: An In-Depth Presentation of Probability Rules and PracticesThe section starts with lectures that run through a detailed exposure to the fundamentals and practices of probability rules. Bayes' Theorem is highly linked with such rules and it will not be possible for analysts embarking on its use (and the understanding of its extensions) to learn and use these algorithms without a deep understanding of probability.The section uses common sense to clarify often obscure concepts in probability. Many examples are presented and explained in detail.Section 3: The Use of the Confusion Matrix for Evaluating Bayesian ResultsSome might wonder why we are introducing the Confusion Matrix and its useful KPI's in this course. The answer is that in both Sections 3 and 4, we will need to evaluate our results in terms of precision, accuracy, error rates, etc. The Confusion Matrix is a contingency table consisting of four results extracted from comparing the algorithm's outcome with the historically known outcome of the classes in a Test Table. Four measurements consist of True Positive, True Negative, False Positive and False Negative. These four counts can be used in a variety of ways to measure such KPI's as accuracy, precision, error rates and such. (The confusion matrix is also used in a variety of other classification machine learning methods: logistic regression, decision trees, etc.)Section 4: The Fundamental Application of Bayes' Theoremthis section presents the Theorem of Bayes first running through a common-sense example. This is followed by the derivation of the Theorem and a clear explanation of the terms used in the Bayes' Theorem formula. A set of 8 major workouts present the use of the Theorem in different formats (vertical and horizontal tables, decision trees and graphic solutions). The last 3 workouts output the results of the workouts to a Confusion Matrix and shows how that can be used to evaluate the results of the Theorem.Section 5: How to Use the Naïve Bayes Classifiersthis is the heart of the course. It presents a wide variety of algorithms whose purpose is the supervised classification of data. The Naïve Bayes Classifiers are a family of algorithms based on the Bayes' Theorem. They differ in various ways from each other. They are listed below.Amongst the lectures detailing these algorithms with clear examples are "support" lectures that present topics that are needed as a support to these algorithms.After starting with two lectures that present the fundamentals of Naïve Bayes Classifiers and the required theory, the course proceeds with a set of lectures consisting of 8 Naïve Bayes Classifier variants:1) Categorical Naïve Bayes Classifiers2) Gaussian and Continuous Naïve Bayes Classifiers3) Non-Gaussian Continuous Naïve Bayes Classifiers4) Bernoulli Naïve Bayes Classifier5) Multinomial Naïve Bayes Classifier6) Weighted Naive Bayes Classification7) Complement Naïve Bayes Classification8) Kernel Distance Estimation and Naive Bayes ClassificationTo support the presentations above, the course will interleave the following detailed presentations consisting of methods, topics and procedures:1) Laplace Smoothing Correction2) Extensions to Continuous Features: checking for normality, checking for independence of features, smoothing corrections for Gaussian features3) Two Discrete Distributions - Bernoulli and Categorical4) Two Discrete Distributions - Binomial and Multinomial5) Entropy and Information and how used in Naïve Bayes Classification6) Kononenko Information Gain and Evaluation of Classifiers7) Log Odds Ratio and Nomograms used in Bayes Classification8) Kernel Distance Estimation - Estimating the Bandwidth hResourcesAll lectures will be supported by a variety of resources:· Solved and documented workouts in Excel· Dedicated workbooks that animate and describe various probability distributions· Links to Interesting articles and books Overview Section 1: Introduction Lecture 1 The Purpose and Structure of this Course Section 2: An In-Depth Presentation of Probability Rules and Practices Lecture 2 Fundamental Definitions of Probability Lecture 3 Probability - Distribution Tables (Contingency) Lecture 4 Probability Rule 1) Intersection Rule for Independent Events (JOIN) Lecture 5 Probability Rule 2) The Union Rule (OR or UNION) Lecture 6 Probability Rule 3) The Union Rule (XOR or Exclusive UNION) Lecture 7 Probability Rule 4) The Intersection Rule (AND or CONDITIONAL) for Dependent Eve Lecture 8 Probability Rule 4) The Intersection Rule for Dependent Events (Examples) Lecture 9 Probability - Decision Trees and Probability Lecture 10 Probability Rule 5) The Meaning of Independence and Mutual Exclusivity Lecture 11 Probability Rule 6) Total Probability Lecture 12 Probability Rule 7) The Chain Rule of Probability Section 3: The Use of the Confusion Matrix for Evaluating Bayesian Results Lecture 13 Evaluating Classifiers with the Confusion Matrix and its KPIs Lecture 14 Extracting KPI's from the Confusion Matrix Lecture 15 Evaluating Classifiers in the Case of Multiple Classes or Multiple Labels Section 4: The Fundamental Application of Bayes' Theorem Lecture 16 Bayes Theorem - Rationale and Derivation of Theorem Lecture 17 Bayes Theorem - A Bayesian Story, an Example without Formulas Lecture 18 Bayes Theorem - Defining the Factors in Bayes' Theorem Lecture 19 Bayes' Theorem - (W1) The Famous HIV Test Lecture 20 Bayes' Theorem - (W2-W4) Spam Testing 3 Events, Defective Machines and HIV (Hori Lecture 21 Bayes' Theorem - (W5) Spam Testing (Contingency Table and Graphic Solutions) Lecture 22 Bayes' Theorem - (W5) Spam Testing (Continued - Deriving Posteriors with the Con Lecture 23 Bayes' Theorem - (W6-W8) Predicting Rain and Identifying Product Suppliers + Mon Section 5: Naive Bayes Classifiers Lecture 24 Naive Bayes Classifiers - Introduction Lecture 25 Naive Bayes Classifiers - Introducing the Algorithm Lecture 26 Naive Bayes Classifiers - The Algorithm thru a Short Example Lecture 27 Naive Bayes Classifiers - The Naive Bayes Classifier Procedure Applied on a Cate Lecture 28 Naive Bayes Classifiers - More Categorical Examples Lecture 29 Naive Bayes Classifiers - Laplace Smoothing Correction Lecture 30 Naive Bayes Classifiers - Correction using M-Estimates Lecture 31 Naive Bayes Classifiers - Gaussian and Continuous Lecture 32 Naive Bayes Classifiers - Three Gaussian Examples Lecture 33 Naive Bayes Classifiers - Some Extensions to Continuous Features Lecture 34 Naive Bayes Classifiers - Handling Non-Gaussian Continuous Features (Beta Distri Lecture 35 Naive Bayes Classifiers - Applying the Non-Gaussian (Beta) Procedure to Personal Lecture 36 Naive Bayes Classifiers - Discrete Distributions - Bernoulli and Categorical Lecture 37 Naive Bayes Classifiers - Discrete Distribution - Binomial Lecture 38 Naive Bayes Classifiers - Discrete Distribution - Multinomial Lecture 39 Naive Bayes Classifiers - Bernoulli Naive Bayes Examples Lecture 40 Naive Bayes Classifiers - Multinomial Naive Bayes Examples Lecture 41 Naive Bayes Classifiers - Weighted Naive Bayes Lecture 42 Naive Bayes Classifiers - Complement Classifier Lecture 43 Naive Bayes Classifiers - Entropy and Information Lecture 44 Naive Bayes Classifiers - Kononenko Information Gain and Evaluation Feature Infl Lecture 45 Naive Bayes Classifiers - Log Odds Ratio and Nomograms Lecture 46 Naive Bayes Classifiers - Kernel Distance Estimation (Discrete and Continuous Di Lecture 47 Naive Bayes Classifiers - Kernel Distance Estimation and Application of Naive Ba Lecture 48 Naive Bayes Classifiers - Kernel Distance Estimation - Estimating the Bandwidth Data Scientists and Analysts,Machine Learning Engineers,Artificial Intelligence Researchers,Software Developers,Business Analysts,Market, Healthcare, Education and Financial professions,Cybersecurity Experts,Natural Language Processing (NLP) Specialists,Product Managers,Business Improvement Experts,Quality Assurance Professionals Screenshot Homepage https://www.udemy.com/course/applied-bayes-theorem-and-naive-bayes-classifiers/ Rapidgator https://rg.to/file/68b69b902e73cc1bf284183d5a2d8126/gwwth.Applied.Bayes.Theorem.And.Naive.Bayes.Classifiers.part1.rar.html https://rg.to/file/68bd7496b68c9b47eebfc2f8b43a4da4/gwwth.Applied.Bayes.Theorem.And.Naive.Bayes.Classifiers.part2.rar.html https://rg.to/file/6dc74f70d5f45951d3243b309154c6fd/gwwth.Applied.Bayes.Theorem.And.Naive.Bayes.Classifiers.part3.rar.html https://rg.to/file/b68ae0c8255564a270eac8df3d8378b1/gwwth.Applied.Bayes.Theorem.And.Naive.Bayes.Classifiers.part4.rar.html Fikper Free Download https://fikper.com/1pZNayBof2/gwwth.Applied.Bayes.Theorem.And.Naive.Bayes.Classifiers.part2.rar.html https://fikper.com/4tjlHz81za/gwwth.Applied.Bayes.Theorem.And.Naive.Bayes.Classifiers.part3.rar.html https://fikper.com/nsdDGIetOO/gwwth.Applied.Bayes.Theorem.And.Naive.Bayes.Classifiers.part4.rar.html https://fikper.com/u6bGGzlymp/gwwth.Applied.Bayes.Theorem.And.Naive.Bayes.Classifiers.part1.rar.html No Password - Links are Interchangeable
  2. Teoria wszystkiego / The Zero Theorem (2013) PL.BRRip.XviD-GR4PE | Lektor PL ~~ OPiS FiLMU / MOViE DESCRiPTiON ~~ Reżyseria: Terry Gilliam Scenariusz: Pat Rushin Gatunek: Dramat, Fantasy Kraj: Francja, USA, Wielka Brytania, Rumunia Rok produkcji: 2013 Czas trwania: 106 min. Opis: W niedalekiej przyszłości ludzie zostają pozbawieni resztek prywatności, a odpowiedzią na każde - nawet najskrytsze ich pragnienia - są wszechobecne wirtualne usługi, którymi sterują wielkie korporacje. Ukrywający się przed światem ekscentryczny geniusz Qouen Leth (Waltz) otrzymuje od prezesa zarządu najpotężniejszego koncernu świata (Damon) tajną misję. Korzystając z wszelkich dostępnych ludziom środków ma rozszyfrować sens istnienia wszechświata. Jednak zanim rozwiąże największą ze wszystkich zagadek, musi zmierzyć się ze swoimi paranojami i obsesjami, szaloną psychoanalityczką (Swinton), namolnym szefem (Thewlis), tajemniczą nieznajomą, która chce z nim uprawiać wirtualny seks (Thierry) i czarną dziurą, która nieubłaganie zasysa cały wszechświat... ~~ ZDJĘCiA Z FiLMU / PiCTURES FROM ViDEO ~~ ~~ DANE TECHNiCZNE / TECHNiCAL DATA ~~ ~~ 1 PLiK - POBiERASZ i OGLĄDASZ / 1 FiLE - DOWNLOAD AND WATCH ~~ https://rocketshare.com/file/d9b2797cc9e34b6c86e7fb1e1ee927b8/The.Zero.Theorem.2013.PL.BRRip.XviD-GR4PE.avi https://rapidu.net/1529655121/The.Zero.Theorem.2013.PL.BRRip.XviD-GR4PE.avi https://lunaticfiles.com/opwnm8gtge9v/The.Zero.Theorem.2013.PL.BRRip.XviD-GR4PE.avi.html https://fileshark.pl/pobierz/27588041/6dbec/the-zero-theorem-2013-pl-brrip-xvid-gr4pe-avi
  3. gatunek: Dramat, Fantasy produkcja: USA, Wielka Brytania, Rumunia premiera: 23 maja 2014 (Polska) 2 wrze??nia 2013 (??wiat) re??yseria: Terry Gilliam scenariusz: Pat Rushin W niedalekiej przysz??o??ci ludzie zostajÄ? pozbawieni resztek prywatno??ci, a odpowiedziÄ? na ka??de - nawet najskrytsze ich pragnienia - sÄ? wszechobecne wirtualne us??ugi, kt??rymi sterujÄ? wielkie korporacje. UkrywajÄ?cy siÄ? przed ??wiatem ekscentryczny geniusz Qouen Leth (Waltz) otrzymuje od prezesa zarzÄ?du najpotÄ???niejszego koncernu ??wiata (Damon) tajnÄ? misjÄ?. KorzystajÄ?c z wszelkich dostÄ?pnych ludziom ??rodk??w ma rozszyfrowaÄ? sens istnienia wszech??wiata. Jednak zanim rozwiÄ???e najwiÄ?kszÄ? ze wszystkich zagadek, musi zmierzyÄ? siÄ? ze swoimi paranojami i obsesjami, szalonÄ? psychoanalityczkÄ? (Swinton), namolnym szefem (Thewlis), tajemniczÄ? nieznajomÄ?, kt??ra chce z nim uprawiaÄ? wirtualny seks (Thierry) i czarnÄ? dziurÄ?, kt??ra nieub??aganie zasysa ca??y wszech??wiat... Teoria wszystkiego / The Zero Theorem (2013) 720p.BluRay.x264.AC3-RARBG https://rapidu.net/2815551641/Theorem72.part1.rar https://rapidu.net/1515551634/Theorem72.part4.rar https://rapidu.net/0715551625/Theorem72.part2.rar https://rapidu.net/9115551619/Theorem72.part3.rar https://rapidu.net/7815551603/Theorem72.part5.rar http://fileshark.pl/pobierz/178156/936e5/theorem72-part1-rar http://fileshark.pl/pobierz/178157/a8f5a/theorem72-part2-rar http://fileshark.pl/pobierz/178155/8843a/theorem72-part3-rar http://fileshark.pl/pobierz/178160/ab646/theorem72-part4-rar http://fileshark.pl/pobierz/178158/57424/theorem72-part5-rar http://uploaded.net/file/vf63wqpm/Theorem72.part1.rar http://uploaded.net/file/4b2pnb94/Theorem72.part4.rar http://uploaded.net/file/owqnvcr5/Theorem72.part3.rar http://uploaded.net/file/6hc3w43h/Theorem72.part2.rar http://uploaded.net/file/pwrpm8t9/Theorem72.part5.rar Teoria wszystkiego / The Zero Theorem (2013) 1080p.BluRay.x264.AC3-RARBG https://rapidu.net/6815553712/Theorem18.part5.rar https://rapidu.net/1315553703/Theorem18.part6.rar https://rapidu.net/0615553698/Theorem18.part7.rar https://rapidu.net/5715553632/Theorem18.part4.rar https://rapidu.net/6715553629/Theorem18.part8.rar https://rapidu.net/0415552185/Theorem18.part2.rar https://rapidu.net/5015552172/Theorem18.part3.rar https://rapidu.net/6715552165/Theorem18.part1.rar http://fileshark.pl/pobierz/178181/60214/theorem18-part1-rar http://fileshark.pl/pobierz/178180/e5254/theorem18-part2-rar http://fileshark.pl/pobierz/178182/cf13b/theorem18-part3-rar http://fileshark.pl/pobierz/178187/8dd60/theorem18-part4-rar http://fileshark.pl/pobierz/178188/083cc/theorem18-part5-rar http://fileshark.pl/pobierz/178189/fa178/theorem18-part6-rar http://fileshark.pl/pobierz/178195/e1e6d/theorem18-part7-rar http://fileshark.pl/pobierz/178194/cbc09/theorem18-part8-rar http://uploaded.net/file/iia4xqw7/Theorem18.part1.rar http://uploaded.net/file/e7ngrpnj/Theorem18.part7.rar http://uploaded.net/file/st61yry8/Theorem18.part4.rar http://uploaded.net/file/imfrckrf/Theorem18.part6.rar http://uploaded.net/file/r45xj85d/Theorem18.part3.rar http://uploaded.net/file/gpj1u6b4/Theorem18.part5.rar http://uploaded.net/file/xr5xkcbs/Theorem18.part2.rar http://uploaded.net/file/dix7vakd/Theorem18.part8.rar http://catshare.net/8h1srWII6Yuahh8w/Theorem18.part8.rar http://catshare.net/Tz7xrAdlWCZHIBar/Theorem18.part5.rar http://catshare.net/OgUW029OyrhtkAnJ/Theorem18.part1.rar http://catshare.net/vQHmSgzl34ip37nk/Theorem18.part2.rar http://catshare.net/1Mnqy6rn7Ng3NazS/Theorem18.part4.rar http://catshare.net/NZCFIajtoKDwfFjg/Theorem18.part6.rar http://catshare.net/ShHIKpLC0m2qVGai/Theorem18.part3.rar http://catshare.net/rVUbjrprwGda9Hxe/Theorem18.part7.rar
×
×
  • Dodaj nową pozycję...

Powiadomienie o plikach cookie

Korzystając z tej witryny, wyrażasz zgodę na nasze Warunki użytkowania.