Skocz do zawartości

Aktywacja nowych użytkowników
Zakazane produkcje

  • advertisement_alt
  • advertisement_alt
  • advertisement_alt
0DAYDDL

15 Math Concepts Every Data Scientist Should Know: Understand and learn how to app...

Rekomendowane odpowiedzi


f35b76968e8f8e8f61e2d818299b4fd8.jpg



pdf | 23.74 MB | English | Isbn:9781837631940 | Author: David Hoyle | Year: 2024



About ebook: 15 Math Concepts Every Data Scientist Should Know: Understand and learn how to apply the math behind data science algorithms

Create more effective and powerful data science solutions by learning when, where, and how to apply key math principles that drive most data science algorithms


Key Features

[*]Understand key data science algorithms with Python-based examples
[*]Increase the impact of your data science solutions by learning how to apply existing algorithms
[*]Take your data science solutions to the next level by learning how to create new algorithms
[*]Purchase of the print or Kindle book includes a free PDF eBook

Book Description
Data science combines the power of data with the rigor of scientific methodology, with mathematics providing the tools and frameworks for analysis, algorithm development, and deriving insights. As machine learning algorithms become increasingly complex, a solid grounding in math is crucial for data scientists. David Hoyle, with over 30 years of experience in statistical and mathematical modeling, brings unparalleled industrial expertise to this book, drawing from his work in building predictive models for the world's largest retailers. Encompassing 15 crucial concepts, this book covers a spectrum of mathematical techniques to help you understand a vast range of data science algorithms and applications. Starting with essential foundational concepts, such as random variables and probability distributions, you'll learn why data varies, and explore matrices and linear algebra to transform that data. Building upon this foundation, the book spans general intermediate concepts, such as model complexity and network analysis, as well as advanced concepts such as kernel-based learning and information theory. Each concept is illustrated with Python code snippets demonstrating their practical application to solve problems. By the end of the book, you'll have the confidence to apply key mathematical concepts to your data science challenges.
What you will learn

[*]Master foundational concepts that underpin all data science applications
[*]Use advanced techniques to elevate your data science proficiency
[*]Apply data science concepts to solve real-world data science challenges
[*]Implement the NumPy, S[beeep], and scikit-learn concepts in Python
[*]Build predictive machine learning models with mathematical concepts
[*]Gain expertise in Bayesian non-parametric methods for advanced probabilistic modeling
[*]Acquire mathematical skills tailored for time-series and network data types

Who this book is for
This book is for data scientists, machine learning engineers, and data analysts who already use data science tools and libraries but want to learn more about the underlying math. Whether you're looking to build upon the math you already know, or need insights into when and how to adopt tools and libraries to your data science problem, this book is for you. Organized into essential, general, and selected concepts, this book is for both practitioners just starting out on their data science journey and experienced data scientists.








Ukryta Zawartość

    Treść widoczna tylko dla użytkowników forum DarkSiders. Zaloguj się lub załóż darmowe konto na forum aby uzyskać dostęp bez limitów.

Ukryta Zawartość

    Treść widoczna tylko dla użytkowników forum DarkSiders. Zaloguj się lub załóż darmowe konto na forum aby uzyskać dostęp bez limitów.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Dołącz do dyskusji

Możesz dodać zawartość już teraz a zarejestrować się później. Jeśli posiadasz już konto, zaloguj się aby dodać zawartość za jego pomocą.

Gość
Dodaj odpowiedź do tematu...

×   Wklejono zawartość z formatowaniem.   Usuń formatowanie

  Dozwolonych jest tylko 75 emoji.

×   Odnośnik został automatycznie osadzony.   Przywróć wyświetlanie jako odnośnik

×   Przywrócono poprzednią zawartość.   Wyczyść edytor

×   Nie możesz bezpośrednio wkleić grafiki. Dodaj lub załącz grafiki z adresu URL.

    • 1 Posts
    • 8 Views
    • 1 Posts
    • 10 Views
    • 1 Posts
    • 13 Views
    • 1 Posts
    • 11 Views
    • 1 Posts
    • 8 Views

×
×
  • Dodaj nową pozycję...

Powiadomienie o plikach cookie

Korzystając z tej witryny, wyrażasz zgodę na nasze Warunki użytkowania.