Skocz do zawartości

Aktywacja nowych użytkowników
Zakazane produkcje

  • advertisement_alt
  • advertisement_alt
  • advertisement_alt
Courses2024

Crash Course Introduction To Machine Learning

Rekomendowane odpowiedzi

51f380acca3a2bea5002a99317c2c44a.jpeg
Free Download Crash Course Introduction To Machine Learning
Published 9/2024
MP4 | Video: h264, 1920x1080 | Audio: AAC, 44.1 KHz
Language: English | Size: 292.05 MB | Duration: 0h 40m
Kickstart Your Machine Learning Journey: Hands-On Projects with Python Libraries

What you'll learn
Learn the key concepts of Machine Learning
Get experienced with Jupyter Notebooks
Learn how to use Python libraries, such as Scikit-learn, numpy, pandas, matplotlib
Data handling & cleaning to be used in Machine Learning
Introduced to common ML algorithms
Learn to evaluate the performance of a model
Have hands-on experience with ML algorithms
Requirements
Basic understanding of high school mathematics
Some Python experience would be helpful
Description
Welcome to "Crash Course Introduction to Machine Learning"! This course is designed to provide you with a solid foundation in machine learning, leveraging the powerful Scikit-learn library in Python.What You'll Learn:The Basics of Machine Learning: Understand the key concepts and types of machine learning, including supervised, unsupervised, and reinforcement learning.Setting Up Your Environment: Get hands-on experience setting up Python, Jupyter Notebooks, and essential libraries like numpy, pandas, matplotlib, and Scikit-learn.Data Preprocessing: Learn how to load, clean, and preprocess data, handle missing values, and split data for training and testing.Building Machine Learning Models: Explore common algorithms such as Linear Regression, Decision Trees, and K-Nearest Neighbors. Train and evaluate models(Linear Regression), and understand performance metrics like accuracy, R^2 and scatter values in plots to measure the prediction.Model Deployment: Gain practical knowledge on saving your pre-trained model for others to use.This course is structured to provide you with both theoretical understanding and practical skills. Each section builds on the previous one, ensuring you develop a comprehensive understanding of machine learning concepts and techniques.Why This Course?Machine learning is transforming industries and driving innovation. This course equips you with the knowledge and skills to harness the power of machine learning, whether you're looking to advance your career, work on personal projects, or simply explore this exciting field.Prerequisites:Basic understanding of Python programming.No prior knowledge of machine learning is required.Enroll Today!Join me on this journey to become proficient in machine learning with Scikit-learn. By the end of this course, you'll have the confidence to build, evaluate, and deploy your machine learning models. Let's get started!
Overview
Section 1: Introduction
Lecture 1 Introduction
Section 2: Basics of Machine Learning
Lecture 2 AI vs Machine Learning vs Deep Learning
Lecture 3 Types of Machine Learning
Lecture 4 Key Terminology
Section 3: Setting up the environment
Lecture 5 Installing Anaconda Distribution
Lecture 6 The importance of Jupyter Notebooks
Section 4: Data Preprocessing
Lecture 7 Data Loading & Cleaning
Lecture 8 Data Splitting
Section 5: Building a simple ML model
Lecture 9 Introduction to ML models & using one
Lecture 10 Common ML models
Lecture 11 Evaluating accuracy
Section 6: Saving the trained model
Lecture 12 Saving the model using Pickle
Lecture 13 Publishing the ML model
Section 7: Conclusion and Next Steps
Lecture 14 Recap of What You've Learned
Lecture 15 Resources
Section 8:[Extra] Improving a model's performance
Lecture 16 5 common methods to improve a model's performance
Anyone eager enough to learn how machine learning works and to break down the magic to reality
Homepage

Ukryta Zawartość

    Treść widoczna tylko dla użytkowników forum DarkSiders. Zaloguj się lub załóż darmowe konto na forum aby uzyskać dostęp bez limitów.




Ukryta Zawartość

    Treść widoczna tylko dla użytkowników forum DarkSiders. Zaloguj się lub załóż darmowe konto na forum aby uzyskać dostęp bez limitów.

No Password - Links are Interchangeable

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Dołącz do dyskusji

Możesz dodać zawartość już teraz a zarejestrować się później. Jeśli posiadasz już konto, zaloguj się aby dodać zawartość za jego pomocą.

Gość
Dodaj odpowiedź do tematu...

×   Wklejono zawartość z formatowaniem.   Usuń formatowanie

  Dozwolonych jest tylko 75 emoji.

×   Odnośnik został automatycznie osadzony.   Przywróć wyświetlanie jako odnośnik

×   Przywrócono poprzednią zawartość.   Wyczyść edytor

×   Nie możesz bezpośrednio wkleić grafiki. Dodaj lub załącz grafiki z adresu URL.

    • 1 Posts
    • 11 Views
    • 1 Posts
    • 15 Views
    • 1 Posts
    • 11 Views
    • 1 Posts
    • 10 Views
    • 1 Posts
    • 7 Views

×
×
  • Dodaj nową pozycję...

Powiadomienie o plikach cookie

Korzystając z tej witryny, wyrażasz zgodę na nasze Warunki użytkowania.