Skocz do zawartości

Aktywacja nowych użytkowników
Zakazane produkcje

  • advertisement_alt
  • advertisement_alt
  • advertisement_alt
Courses2024

Mastering Machine Learning From Basics To Breakthroughs

Rekomendowane odpowiedzi

e3c842409ba685613ce0a4cd659c841c.jpeg
Free Download Mastering Machine Learning From Basics To Breakthroughs
Published 9/2024
MP4 | Video: h264, 1920x1080 | Audio: AAC, 44.1 KHz
Language: English | Size: 918.11 MB | Duration: 3h 38m
Machine Learning, Supervised Learning, Unsupervised Learning, Regression, Classification, Clustering, Markov Models

What you'll learn
Explore the fundamental mathematical concepts of machine learning algorithms
Apply linear machine learning models to perform regression and classification
Utilize mixture models to group similar data items
Develop machine learning models for time-series data prediction
Design ensemble learning models using various machine learning algorithms
Requirements
Foundations of Mathematics and Algorithms
Description
This Machine Learning course offers a comprehensive introduction to the core concepts, algorithms, and techniques that form the foundation of modern machine learning. Designed to focus on theory rather than hands-on coding, the course covers essential topics such as supervised and unsupervised learning, regression, classification, clustering, and dimensionality reduction. Learners will explore how these algorithms work and gain a deep understanding of their applications across various domains.The course emphasizes theoretical knowledge, providing a solid grounding in critical concepts such as model evaluation, bias-variance trade-offs, overfitting, underfitting, and regularization. Additionally, it covers essential mathematical foundations like linear algebra, probability, statistics, and optimization techniques, ensuring learners are equipped to grasp the inner workings of machine learning models.Ideal for students, professionals, and enthusiasts with a basic understanding of mathematics and programming, this course is tailored for those looking to develop a strong conceptual understanding of machine learning without engaging in hands-on implementation. It serves as an excellent foundation for future learning and practical applications, enabling learners to assess model performance, interpret results, and understand the theoretical basis of machine learning solutions.By the end of the course, parti[beeep]nts will be well-prepared to dive deeper into machine learning or apply their knowledge in data-driven fields, without requiring programming or software usage.
Overview
Section 1: Introduction
Lecture 1 Introduction to Machine Learning
Lecture 2 Types of Machine Learning
Lecture 3 Polynomial Curve Fitting
Lecture 4 Probability
Lecture 5 Total Probability, Bayes Rule and Conditional Independence
Lecture 6 Random Variables and Probability Distribution
Lecture 7 Expectation, Variance, Covariance and Quantiles
Section 2: Linear Models for Regression
Lecture 8 Maximum Likelihood Estimation
Lecture 9 Least Squares Method
Lecture 10 Robust Regression
Lecture 11 Ridge Regression
Lecture 12 Bayesian Linear Regression
Lecture 13 Linear models for classification::Discriminant Functions
Lecture 14 Probabilistic Discriminative and Generative Models
Lecture 15 Logistic Regression
Lecture 16 Bayesian Logistic Regression
Lecture 17 Kernel Functions
Lecture 18 Kernel Trick
Lecture 19 Support Vector Machine
Section 3: Mixture Models and EM
Lecture 20 K-means clustering
Lecture 21 Mixtures of Gaussians
Lecture 22 EM for Gaussian Mixture Models
Lecture 23 PCA, Choosing the number of latent dimensions
Lecture 24 Hierarchial clustering
Students, data scientists and engineers seeking to solve data-driven problems through predictive modeling

Homepage

Ukryta Zawartość

    Treść widoczna tylko dla użytkowników forum DarkSiders. Zaloguj się lub załóż darmowe konto na forum aby uzyskać dostęp bez limitów.






Ukryta Zawartość

    Treść widoczna tylko dla użytkowników forum DarkSiders. Zaloguj się lub załóż darmowe konto na forum aby uzyskać dostęp bez limitów.

No Password - Links are Interchangeable

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Dołącz do dyskusji

Możesz dodać zawartość już teraz a zarejestrować się później. Jeśli posiadasz już konto, zaloguj się aby dodać zawartość za jego pomocą.

Gość
Dodaj odpowiedź do tematu...

×   Wklejono zawartość z formatowaniem.   Usuń formatowanie

  Dozwolonych jest tylko 75 emoji.

×   Odnośnik został automatycznie osadzony.   Przywróć wyświetlanie jako odnośnik

×   Przywrócono poprzednią zawartość.   Wyczyść edytor

×   Nie możesz bezpośrednio wkleić grafiki. Dodaj lub załącz grafiki z adresu URL.

    • 1 Posts
    • 29 Views
    • 1 Posts
    • 21 Views
    • 1 Posts
    • 31 Views
    • 1 Posts
    • 19 Views
    • 1 Posts
    • 28 Views

×
×
  • Dodaj nową pozycję...

Powiadomienie o plikach cookie

Korzystając z tej witryny, wyrażasz zgodę na nasze Warunki użytkowania.