Skocz do zawartości

Aktywacja nowych użytkowników
Zakazane produkcje

  • advertisement_alt
  • advertisement_alt
  • advertisement_alt
Courses2024

Cuda Parallel Programming On Nvidia Gpus (Hw And Sw)

Rekomendowane odpowiedzi

1d0f872aac633d9d1a249ecc359f3a50.jpeg
Free Download Cuda Parallel Programming On Nvidia Gpus (Hw And Sw)
Published 10/2024
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz
Language: English | Size: 10.44 GB | Duration: 12h 54m
Performance Optimization and Analysis for High-Performance Computing

What you'll learn
Comprehensive Understanding of GPU vs CPU Architecture
learn the history of graphical processing unit (GPU) until the most recent products
Understand the internal structure of GPU
Understand the different types of memories and how they affect the performance
Understand the most recent technologies in the GPU internal components
Understand the basics of the CUDA programming on GPU
Start programming GPU using both CUDA on Both windows and linux
understand the most efficient ways for parallelization
Profiling and Performance Tuning
Leveraging Shared Memory
Requirements
C and C++ basics
Linux and windows basics
Computer Architecture basics
Description
This comprehensive course is designed for anyone looking to dive deep into CUDA programming and NVIDIA GPU architectures. Starting from the basics of GPU hardware, the course walks you through the evolution of NVIDIA's architectures, their key performance features, and the computational power of CUDA. With practical programming examples and step-by-step instruction, students will develop an in-depth understanding of GPU computing, CUDA programming, and performance optimization. Whether you're an experienced developer or new to parallel computing, this course provides the knowledge and skills necessary to harness the full potential of GPU programming.Here's a refined summary of what you will gain from this CUDA programming course:Comprehensive Understanding of GPU vs CPU Architecture: Students will learn the fundamental differences between GPUs and CPUs, gaining insight into how GPUs are designed for parallel processing tasks.Deep Dive into NVIDIA's GPU Architectures: The course covers the evolution of NVIDIA's GPU architectures, including Fermi, Pascal, Volta, Ampere, and Hopper, and teaches how to compare different generations based on key performance parameters.Hands-On CUDA Installation: Students will learn how to install CUDA across various operating systems, including Windows, Linux, and using WSL, while exploring the essential features that come with the CUDA toolkit.Introduction to CUDA Programming Concepts: Through practical examples, students will understand core CUDA programming principles, including thread and block management, and how to develop parallel applications like vector addition.Profiling and Performance Tuning: The course will guide students through using NVIDIA's powerful profiling tools like Nsight Compute and nvprof to measure GPU performance and optimize code by addressing issues like occupancy and latency hiding.Mastering 2D Indexing for Matrix Operations: Students will explore 2D indexing techniques for efficient matrix computations, learning to optimize memory access patterns and enhance performance.Performance Optimization Techniques: They will acquire skills to optimize GPU programs through real-world examples, including handling non-power-of-2 data sizes and fine-tuning operations for maximum efficiency.Leveraging Shared Memory: The course dives into how shared memory can boost CUDA application performance by improving data locality and minimizing global memory accesses.Understanding Warp Divergence: Students will learn about warp divergence and its impact on performance, along with strategies to minimize it and ensure smooth execution of parallel threads.Real-World Application of Profiling and Debugging: The course emphasizes practical use cases, where students will apply debugging techniques, error-checking APIs, and advanced profiling methods to fine-tune their CUDA programs for real-world applications.By the end of the course, students will be proficient in CUDA programming, profiling, and optimization, equipping them with the skills to develop high-performance GPU applications.
Overview
Section 1: Introduction to the Nvidia GPUs hardware
Lecture 1 GPU vs CPU (very important)
Lecture 2 NVidia's history (How Nvidia started dominating the GPU sector)
Lecture 3 Architectures and Generations relationship[Hopper, Ampere, GeForce and Tesla]
Lecture 4 How to know the Architecture and Generation
Lecture 5 The difference between the GPU and the GPU Chip
Lecture 6 The architectures and the corresponding chips
Lecture 7 Nvidia GPU architectures From Fermi to hopper
Lecture 8 Parameters required to compare between different Architectures
Lecture 9 Half, single and double precision operations
Lecture 10 Compute capability and utilizations of the GPUs
Lecture 11 Before reading any whitepapers !! look at this
Lecture 12 Volta+Ampere+Pascal+SIMD (Don't skip)
Section 2: Installing Cuda and other programs
Lecture 13 What features installed with the CUDA toolkit?
Lecture 14 Installing CUDA on Windows
Lecture 15 Installing WSL to use Linux on windows OS.
Lecture 16 Installing Cuda toolkits on Linux
Section 3: Introduction to CUDA programming
Lecture 17 Mapping SW from CUDA to HW + introducing CUDA.
Lecture 18 001 Hello World program (threads - Blocks)
Lecture 19 Compiling Cuda on Linux
Lecture 20 002 Hello World program ( Warp_IDs)
Lecture 21 003 : Vector addition + the Steps for any CUDA project
Lecture 22 004 : Vector addition + blocks and thread indexing + GPU performance
Lecture 23 005 levels of parallelization - Vector addition with Extra-large vectors
Section 4: Profiling
Lecture 24 Query the device properties using the Runtime APIs
Lecture 25 Nvidia-smi and its configurations (Linux User)
Lecture 26 The GPU's Occupancy and Latency hiding
Lecture 27 Allocated active blocks per SM (important)
Lecture 28 Starting with the nsight compute (first issue)
Lecture 29 All profiling tools from NVidia (Nsight systems - compute - nvprof ...)
Lecture 30 Error checking APIs (look at chat GPU there is an example)
Lecture 31 Nsight Compute performance using command line analysis
Lecture 32 Graphical Nsight Compute (windows and linux)
Section 5: Performance analysis for the previous applications
Lecture 33 Performance analysis
Lecture 34 Vector addition with a size not power of 2 !!! important
Section 6: 2D Indexing
Lecture 35 Matrices addition using 2D of blocks and threads
Lecture 36 Why L1 Hit-rate is zero ?
Section 7: Shared Memory + Warp Divergence + Shuffle Operations
Lecture 37 The shared memory
Lecture 38 Warp Divergence
Section 8: Debugging tools
Lecture 39 Debugging using visual studio (important) 1
For any one interested in GPU and CUDA like engineering students, researchers and any other one
https://www.udemy.com/course/cuda-parallel-programming-on-nvidia-gpus-hw-and-sw/


Ukryta Zawartość

    Treść widoczna tylko dla użytkowników forum DarkSiders. Zaloguj się lub załóż darmowe konto na forum aby uzyskać dostęp bez limitów.

No Password - Links are Interchangeable

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Dołącz do dyskusji

Możesz dodać zawartość już teraz a zarejestrować się później. Jeśli posiadasz już konto, zaloguj się aby dodać zawartość za jego pomocą.

Gość
Dodaj odpowiedź do tematu...

×   Wklejono zawartość z formatowaniem.   Usuń formatowanie

  Dozwolonych jest tylko 75 emoji.

×   Odnośnik został automatycznie osadzony.   Przywróć wyświetlanie jako odnośnik

×   Przywrócono poprzednią zawartość.   Wyczyść edytor

×   Nie możesz bezpośrednio wkleić grafiki. Dodaj lub załącz grafiki z adresu URL.

    • 1 Posts
    • 50 Views
    • 1 Posts
    • 110 Views
    • 1 Posts
    • 276 Views
    • 1 Posts
    • 256 Views

×
×
  • Dodaj nową pozycję...

Powiadomienie o plikach cookie

Korzystając z tej witryny, wyrażasz zgodę na nasze Warunki użytkowania.