Skocz do zawartości

Aktywacja nowych użytkowników
Zakazane produkcje

  • advertisement_alt
  • advertisement_alt
  • advertisement_alt
Courses2024

Marketing Analyst Learn Sales Forecasting & Market Analysis

Rekomendowane odpowiedzi

2438039e43b4b3ec0a6dcebe7d730e32.jpeg
Free Download Marketing Analyst Learn Sales Forecasting & Market Analysis
Published 10/2024
MP4 | Video: h264, 1920x1080 | Audio: AAC, 44.1 KHz
Language: English | Size: 359.81 MB | Duration: 1h 3m
Mastering AI-Driven Sales Forecasting, Market Analysis, customer Segmentation, Predictive Analytics ML models in Python.

What you'll learn
Analyze Market Trends with Python Identify and analyze key market trends and consumer behaviors using Python tools.
Develop Sales Forecasting Models Build predictive models to forecast sales and understand their impact on marketing strategies.
Leverage Data for Market Insights Extract, manipulate, and visualize data to generate valuable market insights and recommendations.
Apply Statistical Methods to Market Analysis Utilize statistical techniques to assess market potential and optimize marketing efforts.
Requirements
Basic understanding of marketing concepts.
Familiarity with Python programming (e.g., variables, loops).
Access to a computer with Python installed.
No advanced data analysis experience required, as foundational concepts will be covered.
Description
Welcome to Comprehensive Marketing Data Analysis and YouTube Analytics using Python, an in-depth, hands-on course designed to equip you with the practical skills needed to leverage Python for marketing data analysis and analytics across various platforms. This course covers a wide range of topics, from YouTube Analytics and Marketing Data Analysis to more advanced case studies using machine learning in marketing, customer segmentation, churn detection, and AB testing. Whether you're a marketing professional, data analyst, or a Python enthusiast, this course will take you from beginner to advanced levels, empowering you to make data-driven decisions in marketing.Part 1: Marketing Data Analysis with Pandas and PythonBuilding on the foundations of YouTube Analytics, this part focuses on general marketing data analysis using Python, emphasizing practical techniques for data-driven marketing strategies.Data Exploration and Preprocessing:Get hands-on with Pandas to clean, preprocess, and explore marketing datasets. Understand how to handle inconsistencies and anomalies to ensure reliable insights.Customer Segmentation:Learn to segment customers effectively, identifying unique profiles and tailoring marketing efforts accordingly. Utilize clustering algorithms to classify customers based on behaviors and preferences.Sales Forecasting and Time Series Analysis:Gain expertise in time series analysis for sales forecasting. Apply techniques like moving averages and exponential smoothing to project future trends.Automating Marketing Analysis:Develop automation skills to streamline data analysis workflows, save time, and scale your analytical capabilities with Python scripts that generate consistent and reliable insights.Marketing Metrics and Campaign Visualization:Dive into key marketing metrics such as CTR, conversion rates, and customer lifetime value. Visualize campaigns using Python libraries to create data-driven strategies.Part 2: YouTube Analytics using PythonYouTube is a treasure trove of marketing insights. This section shows you how to collect, process, and analyze YouTube data with Python.Introduction to YouTube Analytics:Get an overview of YouTube Analytics and how to extract and interpret data using Python. Understand the significance of various metrics for marketing strategies.Data Collection and Processing:Learn how to use the YouTube API for data extraction, covering setup, authentication, and data merging techniques.Text Processing and Sentiment Analysis:Analyze video comments to gauge audience sentiment using NLP techniques in Python.Network Analysis:Explore content creator-audience relationships through network analysis, measuring network metrics, and visualizing connections.Geospatial Data and Mapping:Incorporate geographical data using JSON and create maps to plot user distributions and demographics.Part 3: Banking Data Analysis and Case StudyIn this section, you'll work on a case study using the Kaggle banking dataset, focusing on customer demographics, transaction data, and marketing campaign responses to develop targeted marketing strategies for the banking sector.Part 4: Machine Learning in MarketingDelve into machine learning applications in marketing, including supervised and unsupervised learning, predictive modeling, and budget optimization.Part 5: Customer SegmentationLearn advanced customer segmentation techniques to refine marketing strategies, focusing on clustering and customer behavior analysis.Part 6: Churn DetectionApply machine learning to detect customer churn, understanding how to predict and mitigate potential losses in customer retention.Part 7: Customer Analytics and AB TestingMaster customer analytics with the Google Analytics Customer Revenue Prediction dataset, and gain proficiency in AB testing to measure marketing impact, calculate lift, and perform significance testing with Python.Learning Outcomes:Collect, process, and analyze marketing data and YouTube insights using Python.Build and evaluate predictive models to forecast sales, detect churn, and segment customers.Visualize complex metrics and create maps for geographical insights.Perform sentiment analysis, network analysis, and AB testing for data-driven marketing decisions.Requirements:Basic Python programming knowledge is helpful but not required.No prior marketing or data analysis experience needed; all concepts are introduced from scratch.Intended Audience: This course is ideal for aspiring data analysts, marketers, and professionals who want to enhance their Python skills in a marketing context. It offers insights into YouTube Analytics, customer segmentation, and machine learning for marketing, empowering you to excel in the data-driven marketing field.
Overview
Section 1: Marketing Data Analysis Overview.
Lecture 1 Introduction to Pandas for Marketing Data Analysis
Lecture 2 Assignment Solution
Lecture 3 Exploratory Data Analysis
Lecture 4 Assignment Solution
Lecture 5 Marketing Metrics
Lecture 6 Customer Segmentation Overviewing
Lecture 7 Visualization of the Marketing Campaigns using Python
Lecture 8 Automating Marketing Analysis in Python
Lecture 9 Identifying Marketing Data Inconsistencies using Python
Lecture 10 Resolving Inconsistencies in Marketing Data using Python
Lecture 11 Designing an AB Test for Marketing Data in Python
This course is ideal for marketing professionals, business analysts.,Aspiring data-driven marketers who want to expand their analytical skills.,Whether you're new to Python or looking to enhance your marketing insights with data.,This course will provide the knowledge and practical experience needed to make informed marketing decisions.


Homepage

Ukryta Zawartość

    Treść widoczna tylko dla użytkowników forum DarkSiders. Zaloguj się lub załóż darmowe konto na forum aby uzyskać dostęp bez limitów.








Ukryta Zawartość

    Treść widoczna tylko dla użytkowników forum DarkSiders. Zaloguj się lub załóż darmowe konto na forum aby uzyskać dostęp bez limitów.

No Password - Links are Interchangeable

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Dołącz do dyskusji

Możesz dodać zawartość już teraz a zarejestrować się później. Jeśli posiadasz już konto, zaloguj się aby dodać zawartość za jego pomocą.

Gość
Dodaj odpowiedź do tematu...

×   Wklejono zawartość z formatowaniem.   Usuń formatowanie

  Dozwolonych jest tylko 75 emoji.

×   Odnośnik został automatycznie osadzony.   Przywróć wyświetlanie jako odnośnik

×   Przywrócono poprzednią zawartość.   Wyczyść edytor

×   Nie możesz bezpośrednio wkleić grafiki. Dodaj lub załącz grafiki z adresu URL.

    • 1 Posts
    • 4 Views
    • 1 Posts
    • 4 Views
    • 1 Posts
    • 4 Views
    • 1 Posts
    • 4 Views

×
×
  • Dodaj nową pozycję...

Powiadomienie o plikach cookie

Korzystając z tej witryny, wyrażasz zgodę na nasze Warunki użytkowania.