Skocz do zawartości

Aktywacja nowych użytkowników
Zakazane produkcje

  • advertisement_alt
  • advertisement_alt
  • advertisement_alt
Courses2024

Complete Computer Vision Bootcamp With Pytoch & Tensorflow

Rekomendowane odpowiedzi

b72068e77e5fc3a15b1f481d387666c2.webp
Free Download Complete Computer Vision Bootcamp With Pytoch & Tensorflow
Published: 3/2025
Created by: Krish Naik,Sourangshu Pal,Monal kumar,KRISHAI Technologies Private Limited
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Level: All | Genre: eLearning | Language: English | Duration: 175 Lectures ( 51h 46m ) | Size: 27.5 GB

Learn Computer Vision with CNN, TensorFlow, and PyTorch - Master Object Detection from Basics to Advanced
What you'll learn
Master CNN concepts from basics to advanced with TensorFlow & PyTorch.
Learn object detection models like YOLO and Faster R-CNN.
Implement real-world computer vision projects step-by-step.
Gain hands-on experience with data preprocessing and augmentation.
Build custom CNN models for various computer vision tasks.
Master transfer learning with pre-trained models like ResNet and VGG
Gain practical skills with TensorFlow and PyTorch libraries
Requirements
Basic understanding of Python programming.
Familiarity with fundamental machine learning concepts.
Knowledge of basic linear algebra and calculus.
Understanding of image data and its structure.
Enthusiasm to learn computer vision with hands-on projects.
Description
In this comprehensive course, you will master the fundamentals and advanced concepts of computer vision, focusing on Convolutional Neural Networks (CNN) and object detection models using TensorFlow and PyTorch. This course is designed to equip you with the skills required to build robust computer vision applications from scratch.What You Will LearnThroughout this course, you will gain expertise in:Introduction to Computer VisionUnderstanding image data and its structure.Exploring pixel values, channels, and color spaces.Learning about OpenCV for image manipulation and preprocessing.Deep Learning Fundamentals for Computer VisionIntroduction to Neural Networks and Deep Learning concepts.Understanding backpropagation and gradient descent.Key concepts like activation functions, loss functions, and optimization techniques.Convolutional Neural Networks (CNN)Introduction to CNN architecture and its components.Understanding convolution layers, pooling layers, and fully connected layers.Implementing CNN models using TensorFlow and PyTorch.Data Augmentation and PreprocessingTechniques for improving model performance through data augmentation.Using libraries like imgaug, Albumentations, and TensorFlow Data Pipeline.Transfer Learning for Computer VisionUtilizing pre-trained models such as ResNet, VGG, and EfficientNet.Fine-tuning and optimizing transfer learning models.Object Detection ModelsExploring object detection algorithms like:YOLO (You Only Look Once)SSD (Single Shot MultiBox Detector)Faster R-CNNImplementing these models with TensorFlow and PyTorch.Image Segmentation TechniquesUnderstanding semantic and instance segmentation.Implementing U-Net and Mask R-CNN models.Real-World Projects and ApplicationsBuilding practical computer vision projects such as:Face detection and recognition system.Real-time object detection with webcam integration.Image classification pipelines with deployment.Who Should Enroll?This course is ideal for:Beginners looking to start their computer vision journey.Data scientists and ML engineers wanting to expand their skill set.AI practitioners aiming to master object detection models.Researchers exploring computer vision techniques for academic projects.Professionals seeking practical experience in deploying CV models.PrerequisitesBefore enrolling, ensure you have:Basic knowledge of Python programming.Familiarity with fundamental machine learning concepts.Basic understanding of linear algebra and calculus.Hands-on Learning with Real ProjectsThis course emphasizes practical learning through hands-on projects. Each module includes coding exercises, project implementations, and real-world examples to ensure you gain valuable skills.By the end of this course, you will confidently build, train, and deploy computer vision models using TensorFlow and PyTorch. Whether you are a beginner or an experienced practitioner, this course will empower you with the expertise needed to excel in the field of computer vision.Enroll now and take your computer vision skills to the next level!
Who this course is for
Beginners eager to learn computer vision from scratch.
Data scientists looking to expand their skill set with CNN and object detection.
AI and ML engineers aiming to build computer vision models.
Researchers and students exploring deep learning for visual tasks.
Professionals interested in deploying real-world CV applications
Homepage:

Ukryta Zawartość

    Treść widoczna tylko dla użytkowników forum DarkSiders. Zaloguj się lub załóż darmowe konto na forum aby uzyskać dostęp bez limitów.



Ukryta Zawartość

    Treść widoczna tylko dla użytkowników forum DarkSiders. Zaloguj się lub załóż darmowe konto na forum aby uzyskać dostęp bez limitów.

No Password - Links are Interchangeable

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Dołącz do dyskusji

Możesz dodać zawartość już teraz a zarejestrować się później. Jeśli posiadasz już konto, zaloguj się aby dodać zawartość za jego pomocą.

Gość
Dodaj odpowiedź do tematu...

×   Wklejono zawartość z formatowaniem.   Usuń formatowanie

  Dozwolonych jest tylko 75 emoji.

×   Odnośnik został automatycznie osadzony.   Przywróć wyświetlanie jako odnośnik

×   Przywrócono poprzednią zawartość.   Wyczyść edytor

×   Nie możesz bezpośrednio wkleić grafiki. Dodaj lub załącz grafiki z adresu URL.

    • 1 Posts
    • 2 Views
    • 1 Posts
    • 1 Views
    • 1 Posts
    • 1 Views
    • 1 Posts
    • 1 Views
    • 1 Posts
    • 1 Views

×
×
  • Dodaj nową pozycję...

Powiadomienie o plikach cookie

Korzystając z tej witryny, wyrażasz zgodę na nasze Warunki użytkowania.