Skocz do zawartości

Aktywacja nowych użytkowników
Zakazane produkcje

  • advertisement_alt
  • advertisement_alt
  • advertisement_alt
bookbb

Observability and Mathematics Modeling

Rekomendowane odpowiedzi

e48002f36646890cf2e3471e1381d119.webp
Observability and Mathematics Modeling: Hilbert, Euclid, Gauss-Bolyai-Lobachevsky, and Riemann Geometries
English | 2025 | ISBN: 3111679462 | 468 Pages | EPUB | 47 MB
Observability in Mathematics were developed by authors based on denial of infinity idea. We introduce Observers into arithmetic, and arithmetic becomes dependent on Observers. And after that the basic mathematical parts also become dependent on Observers. One of such parts is geometry. Geometry plays important role not only in pure Mathematics but in contemporary Physics, for example, in Relativity theory, Quantum Yang-Mills theory. We call New Geometry both Observers in arithmetics and in geometry. We reconsider the basis of classic geometry (points, straight lines, planes and space) from this Mathematics point of view. The relations of connection, order, parallels (Euclid, Gauss-Bolyai-Lobachevsky, Riemann), congruence, continuity are discovered and have new properties. We show that almost all classic geometry theorems are satisfied in Mathematics with Observers geometry with probabilities less than 1.


Download Links

Ukryta Zawartość

    Treść widoczna tylko dla użytkowników forum DarkSiders. Zaloguj się lub załóż darmowe konto na forum aby uzyskać dostęp bez limitów.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Dołącz do dyskusji

Możesz dodać zawartość już teraz a zarejestrować się później. Jeśli posiadasz już konto, zaloguj się aby dodać zawartość za jego pomocą.

Gość
Dodaj odpowiedź do tematu...

×   Wklejono zawartość z formatowaniem.   Usuń formatowanie

  Dozwolonych jest tylko 75 emoji.

×   Odnośnik został automatycznie osadzony.   Przywróć wyświetlanie jako odnośnik

×   Przywrócono poprzednią zawartość.   Wyczyść edytor

×   Nie możesz bezpośrednio wkleić grafiki. Dodaj lub załącz grafiki z adresu URL.

    • 1 Posts
    • 8 Views
    • 1 Posts
    • 9 Views
    • 1 Posts
    • 11 Views
    • 1 Posts
    • 15 Views

×
×
  • Dodaj nową pozycję...

Powiadomienie o plikach cookie

Korzystając z tej witryny, wyrażasz zgodę na nasze Warunki użytkowania.