Skocz do zawartości

Aktywacja nowych użytkowników
Zakazane produkcje

  • advertisement_alt
  • advertisement_alt
  • advertisement_alt
bookbb

Applied Unsupervised Learning with Python

Rekomendowane odpowiedzi

9df8a797788a13497c495a44c5f26a56.webp
Aaron Jones, "Applied Unsupervised Learning with Python: Discover hidden patterns and relationships in unstructured data with Python"
English | 2019 | pages: 482 | ISBN: 1789952298 | EPUB | 22,0 mb
Design clever algorithms that can uncover interesting structures and hidden relationships in unstructured, unlabeled data

Key Features
- Learn how to select the most suitable Python library to solve your problem
- Compare k-Nearest Neighbor (k-NN) and non-parametric methods and decide when to use them
- Delve into the applications of neural networks using real-world datasets
Book Description
Unsupervised learning is a useful and practical solution in situations where labeled data is not available.
Applied Unsupervised Learning with Python guides you on the best practices for using unsupervised learning techniques in tandem with Python libraries and extracting meaningful information from unstructured data. The course begins by explaining how basic clustering works to find similar data points in a set. Once you are well versed with the k-means algorithm and how it operates, you'll learn what dimensionality reduction is and where to apply it. As you progress, you'll learn various neural network techniques and how they can improve your model. While studying the applications of unsupervised learning, you will also understand how to mine topics that are trending on Twitter and Facebook and build a news recommendation engine for users. You will complete the course by challenging yourself through various interesting activities such as performing a Market Basket Analysis and identifying relationships between different merchandises.
By the end of this course, you will have the skills you need to confidently build your own models using Python.
What you will learn
- Understand the basics and importance of clustering
- Build k-means, hierarchical, and DBSCAN clustering algorithms from scratch with built-in packages
- Explore dimensionality reduction and its applications
- Use scikit-learn (sklearn) to implement and analyse prin[beeep]l component analysis (PCA)on the Iris dataset
- Employ Keras to build autoencoder models for the CIFAR-10 dataset
- Apply the Apriori algorithm with machine learning extensions (Mlxtend) to study transaction data
Who this book is for
This course is designed for developers, data scientists, and machine learning enthusiasts who are interested in unsupervised learning. Some familiarity with Python programming along with basic knowledge of mathematical concepts including exponents, square roots, means, and medians will be beneficial.
Table of Contents
- Introduction to Clustering
- Hierarchical Clustering
- Neighborhood Approaches and DBSCAN
- An Introduction to Dimensionality Reduction and PCA
- Autoencoders
- t-Distributed Stochastic Neighbor Embedding (t-SNE)
- Topic Modeling
- Market Basket Analysis
- Hotspot Analysis

Download Links

Ukryta Zawartość

    Treść widoczna tylko dla użytkowników forum DarkSiders. Zaloguj się lub załóż darmowe konto na forum aby uzyskać dostęp bez limitów.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Dołącz do dyskusji

Możesz dodać zawartość już teraz a zarejestrować się później. Jeśli posiadasz już konto, zaloguj się aby dodać zawartość za jego pomocą.

Gość
Dodaj odpowiedź do tematu...

×   Wklejono zawartość z formatowaniem.   Usuń formatowanie

  Dozwolonych jest tylko 75 emoji.

×   Odnośnik został automatycznie osadzony.   Przywróć wyświetlanie jako odnośnik

×   Przywrócono poprzednią zawartość.   Wyczyść edytor

×   Nie możesz bezpośrednio wkleić grafiki. Dodaj lub załącz grafiki z adresu URL.

    • 1 Posts
    • 2 Views
    • 1 Posts
    • 5 Views
    • 1 Posts
    • 4 Views
    • 1 Posts
    • 6 Views
    • 1 Posts
    • 3 Views

×
×
  • Dodaj nową pozycję...

Powiadomienie o plikach cookie

Korzystając z tej witryny, wyrażasz zgodę na nasze Warunki użytkowania.