Skocz do zawartości

Aktywacja nowych użytkowników
Zakazane produkcje

  • advertisement_alt
  • advertisement_alt
  • advertisement_alt
bookbb

Transformers for Natural Language Processing and Computer Vision Explore Generative AI and Large Language Models

Rekomendowane odpowiedzi

ade7c02158053a451df4e4a2f7652f8e.webp
Transformers for Natural Language Processing and Computer Vision: Explore Generative AI and Large Language Models with Hugging Face, ChatGPT, GPT-4V, and DALL-E 3 by Denis Rothman
English | February 29, 2024 | ISBN: 1805128728 | 728 pages | MOBI | 10 Mb
The definitive guide to LLMs, from architectures, pretraining, and fine-tuning to Retrieval Augmented Generation (RAG), multimodal Generative AI, risks, and implementations with ChatGPT Plus with GPT-4, Hugging Face, and Vertex AI

Key FeaturesCompare and contrast 20+ models (including GPT-4, BERT, and Llama 2) and multiple platforms and libraries to find the right solution for your projectApply RAG with LLMs using customized texts and embeddingsMitigate LLM risks, such as hallucinations, using moderation models and knowledge basesPurchase of the print or Kindle book includes a free eBook in PDF formatBook Description
Transformers for Natural Language Processing and Computer Vision, Third Edition, explores Large Language Model (LLM) architectures, applications, and various platforms (Hugging Face, OpenAI, and Google Vertex AI) used for Natural Language Processing (NLP) and Computer Vision (CV).
The book guides you through different transformer architectures to the latest Foundation Models and Generative AI. You'll pretrain and fine-tune LLMs and work through different use cases, from summarization to implementing question-answering systems with embedding-based search techniques. You will also learn the risks of LLMs, from hallucinations and memorization to privacy, and how to mitigate such risks using moderation models with rule and knowledge bases. You'll implement Retrieval Augmented Generation (RAG) with LLMs to improve the accuracy of your models and gain greater control over LLM outputs.
Dive into generative vision transformers and multimodal model architectures and build applications, such as image and video-to-text classifiers. Go further by combining different models and platforms and learning about AI agent replication.
This book provides you with an understanding of transformer architectures, pretraining, fine-tuning, LLM use cases, and best practices.
What you will learnBreakdown and understand the architectures of the Original Transformer, BERT, GPT models, T5, PaLM, ViT, CLIP, and DALL-EFine-tune BERT, GPT, and PaLM 2 modelsLearn about different tokenizers and the best practices for preprocessing language dataPretrain a RoBERTa model from scratchImplement retrieval augmented generation and rules bases to mitigate hallucinationsVisualize transformer model activity for deeper insights using BertViz, LIME, and SHAPGo in-depth into vision transformers with CLIP, DALL-E 2, DALL-E 3, and GPT-4VWho this book is for
This book is ideal for NLP and CV engineers, software developers, data scientists, machine learning engineers, and technical leaders looking to advance their LLMs and generative AI skills or explore the latest trends in the field.
Knowledge of Python and machine learning concepts is required to fully understand the use cases and code examples. However, with examples using LLM user interfaces, prompt engineering, and no-code model building, this book is great for anyone curious about the AI revolution.
Table of ContentsWhat are Transformers?Getting Started with the Architecture of the Transformer ModelEmergent vs Downstream Tasks: The Unseen Depths of TransformersAdvancements in Translations with Google Trax, Google Translate, and GeminiDiving into Fine-Tuning through BERTPretraining a Transformer from Scratch through RoBERTaThe Generative AI Revolution with ChatGPTFine-Tuning OpenAI GPT ModelsShattering the Black Box with Interpretable ToolsInvestigating the Role of Tokenizers in Shaping Transformer Models(N.B. Please use the Read Sample option to see further chapters)

Download Links

Ukryta Zawartość

    Treść widoczna tylko dla użytkowników forum DarkSiders. Zaloguj się lub załóż darmowe konto na forum aby uzyskać dostęp bez limitów.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Dołącz do dyskusji

Możesz dodać zawartość już teraz a zarejestrować się później. Jeśli posiadasz już konto, zaloguj się aby dodać zawartość za jego pomocą.

Gość
Dodaj odpowiedź do tematu...

×   Wklejono zawartość z formatowaniem.   Usuń formatowanie

  Dozwolonych jest tylko 75 emoji.

×   Odnośnik został automatycznie osadzony.   Przywróć wyświetlanie jako odnośnik

×   Przywrócono poprzednią zawartość.   Wyczyść edytor

×   Nie możesz bezpośrednio wkleić grafiki. Dodaj lub załącz grafiki z adresu URL.

    • 1 Posts
    • 4 Views
    • 1 Posts
    • 8 Views
    • 1 Posts
    • 7 Views
    • 1 Posts
    • 9 Views

×
×
  • Dodaj nową pozycję...

Powiadomienie o plikach cookie

Korzystając z tej witryny, wyrażasz zgodę na nasze Warunki użytkowania.