Skocz do zawartości

Aktywacja nowych użytkowników
Zakazane produkcje

  • advertisement_alt
  • advertisement_alt
  • advertisement_alt
Courses2024

Udemy - No More Lucky Models - The Art & Science of Model Validation

Rekomendowane odpowiedzi

126aa4234ffbf10f1d63053d2c491fa1.webp
Free Download Udemy - No More Lucky Models - The Art & Science of Model Validation
Published: 4/2025
Created by: Maxwell Sarmento de Carvalho
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Level: Intermediate | Genre: eLearning | Language: English | Duration: 75 Lectures ( 10h 19m ) | Size: 5.32 GB

A Model Validation Specialization - Course I - Applied Data Science, Machine Learning
What you'll learn
Master the fundamentals of model validation and understand why traditional approaches often fail in real-world applications.
Apply the four core validation principles: population representativeness, independence between sets, statistical significance, and structure preservation.
Develop expertise in cross-validation techniques from basic to advanced, selecting the right approach for different data types.
Recognize real-world validation failures through case studies (Google Flu Trends, Zillow, IBM Watson) and how to detect them before deployment.
Implement proper validation for special data structures including time series, geographic data, hierarchical data, and imbalanced datasets.
Design robust validation pipelines that accurately predict model performance in production environments.
Identify and correct common validation issues like data leakage, temporal mixing, and broken data relationships in your ML workflows.
Apply stratified, group-based, and time-aware validation techniques to ensure fair and realistic performance estimates.
Detect when validation results are too optimistic and implement statistical tests to verify performance differences between models.
Assess whether test sets are truly representative of the target population and make corrections when they aren't.
Create validation strategies that properly preserve important data structures like time order, groupings, and hierarchies.
Build comprehensive validation frameworks that transition smoothly from development to production, including drift detection.
Requirements
Basic Python programming skills (ability to work with libraries and understand code examples)
Experience building at least one ML model from start to finish
Understanding of basic statistics (mean, variance, distributions)
Basic knowledge of common ML metrics (accuracy, precision, recall, RMSE, etc.)
Familiarity with pandas for data manipulation and scikit-learn for model building
Foundational understanding of machine learning concepts (supervised learning, basic model types)
Description
No More Lucky Models: The Art & Science of Model ValidationStop relying on luck. Start building models that survive first contact with reality.Ever celebrated impressive validation metrics only to watch your model crumble in production? You're not alone. The gap between academic performance and real-world success isn't bridged with better algorithms or more data-it's mastered through rigorous validation.In this revolutionary course series, you'll uncover the validation principles that tech giants like Google, Zillow, and IBM learned through billion-dollar failures. Instead of repeating their costly mistakes, you'll master the four critical pillars of validation that transform hopeful models into reliable solutions:Population Representativeness: Build models that work for your actual users, not just your convenient sampleIndependence Between Sets: Eliminate the hidden data leakage that creates falsely optimistic performanceSize and Statistical Significance: Distinguish between genuine patterns and random fluctuationsStructure Preservation: Maintain critical data relationships that standard validation approaches destroyThrough hands-on exercises, real-world case studies, and practical code implementations, you'll evolve from basic train-test splits to sophisticated validation strategies that address time-series challenges, imbalanced data, and complex production environments.This isn't about getting lucky with a good split. It's about creating validation systems that consistently separate genuine performance from statistical flukes.By the end of this journey, you'll:Instantly recognize validation red flags before they derail your projectsImplement advanced cross-validation techniques customized to your specific data structureDevelop an intuition for when seemingly impressive results are actually too good to be trueBuild robust validation pipelines that continuously monitor models in productionJoin the elite ranks of data professionals who never confuse luck with skillWhether you're detecting fraud, predicting customer behavior, or forecasting time series data, systematic validation is what separates repeatable success from random chance.No More Lucky Models. No more hoping. No more crossing fingers during deployment.Join thousands of data scientists who have transformed their approach from "it worked on my validation set" to "I understand exactly when and why this model will succeed or fail."In the real world, lucky models eventually run out of luck. Build something better.
Who this course is for
Data scientists and ML practitioners looking to improve validation strategies
Analysts and engineers implementing ML workflows in real-world applications
Bootcamp graduates and self-taught ML learners who need structured model validation techniques
Practitioners who have trained models but lack deep validation understanding
Advanced learners transitioning from theoretical knowledge to real-world applications
Team leaders responsible for ML model governance and quality assurance
Software engineers integrating machine learning models in production
Homepage:

Ukryta Zawartość

    Treść widoczna tylko dla użytkowników forum DarkSiders. Zaloguj się lub załóż darmowe konto na forum aby uzyskać dostęp bez limitów.



Ukryta Zawartość

    Treść widoczna tylko dla użytkowników forum DarkSiders. Zaloguj się lub załóż darmowe konto na forum aby uzyskać dostęp bez limitów.

No Password - Links are Interchangeable

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Dołącz do dyskusji

Możesz dodać zawartość już teraz a zarejestrować się później. Jeśli posiadasz już konto, zaloguj się aby dodać zawartość za jego pomocą.

Gość
Dodaj odpowiedź do tematu...

×   Wklejono zawartość z formatowaniem.   Usuń formatowanie

  Dozwolonych jest tylko 75 emoji.

×   Odnośnik został automatycznie osadzony.   Przywróć wyświetlanie jako odnośnik

×   Przywrócono poprzednią zawartość.   Wyczyść edytor

×   Nie możesz bezpośrednio wkleić grafiki. Dodaj lub załącz grafiki z adresu URL.

    • 1 Posts
    • 10 Views
    • 1 Posts
    • 6 Views
    • 1 Posts
    • 8 Views
    • 1 Posts
    • 4 Views
    • 1 Posts
    • 8 Views

×
×
  • Dodaj nową pozycję...

Powiadomienie o plikach cookie

Korzystając z tej witryny, wyrażasz zgodę na nasze Warunki użytkowania.