Skocz do zawartości

Aktywacja nowych użytkowników
Zakazane produkcje

  • X-Site.pl - Twoje miejsce w sieci
  • X-Site.pl - Twoje miejsce w sieci
  • X-Site.pl - Twoje miejsce w sieci
Courses2024

Udemy - AI PPE Detection Real-Time Workplace Safety with Python&CV

Rekomendowane odpowiedzi

86d685200e734524f50fd90a721a7d2b.webp
Free Download Udemy - AI PPE Detection Real-Time Workplace Safety with Python&CV
Published: 4/2025
Created by: Muhammad Yaqoob G
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Level: All | Genre: eLearning | Language: English | Duration: 16 Lectures ( 47m ) | Size: 554 MB

AI-Powered PPE Detection: Ensuring Workplace Safety in Real Time with Python & Computer Vision
What you'll learn
Understand the fundamentals of Personal Protective Equipment (PPE) detection and its significance in ensuring workplace safety across various industries.
Set up a Python-based development environment with essential libraries, including OpenCV for image processing and Flask for web-based deployment.
Explore the YOLOv8 model, optimized for real-time PPE detection in video streams, and apply it to monitor compliance in workplaces using live video feeds.
Utilize NVIDIA NIM's Florence 2 model for high-accuracy PPE detection in images, ensuring precise identification of helmets, gloves, vests, masks, and shoes.
Learn preprocessing techniques to enhance image and video quality, ensuring compatibility with YOLOv8 and Florence 2 models for optimal detection performance.
Visualize PPE detection in real-time by annotating video frames and images with bounding boxes, labels, and confidence scores.
Address challenges such as occlusions, variations in PPE visibility, low-light conditions, and motion blur in video-based detection.
Develop a real-time monitoring system that enables organizations to ensure worker safety by identifying PPE compliance violations
Leverage Flask for deploying a web-based dashboard to display detection results, making it accessible for safety supervisors and administrators.
Deploy the system in construction, manufacturing, and other high-risk sites to enhance safety protocols and ensure compliance monitoring.
Requirements
Basic understanding of Python programming (helpful but not mandatory).
A laptop or desktop computer with internet access[Windows OS with Minimum 4GB of RAM).
No prior knowledge of AI or Machine Learning is required-this course is beginner-friendly.
Enthusiasm to learn and build practical projects using AI and IoT tools.
Description
Welcome to the AI-Powered PPE Detection System with YOLOv8, NVIDIA NIM, and Flask! In this hands-on course, you'll learn how to build a real-time Personal Protective Equipment (PPE) detection system using YOLOv8 for video-based detection, NVIDIA NIM's Florence 2 model for image-based detection, and Flask for web-based visualization.This course focuses on leveraging deep learning to automatically detect essential safety gear, such as helmets, gloves, vests, masks, and shoes, in workplace environments. By the end of the course, you'll have developed a complete PPE compliance monitoring system, accessible through a Flask-based web dashboard for real-time safety monitoring.What You'll Learn:• Set up your Python development environment and install essential libraries like OpenCV, Flask, YOLOv8, and NVIDIA NIM's Florence 2 for building your system.• Train and deploy a YOLOv8 model to detect PPE items in live video feeds, analyzing worker safety compliance in real time.• Utilize the NVIDIA NIM Florence 2 model for high-accuracy PPE detection in images, ensuring robust workplace safety monitoring.• Preprocess video streams and images to optimize detection accuracy, addressing variations in lighting, occlusions, and movement.• Build a Flask-based web interface to display real-time PPE detection results, making it easy to monitor workplace safety from anywhere.• Explore optimization techniques to improve real-time inference speed and enhance detection accuracy in different environmental conditions.• Develop a complete PPE compliance monitoring system, ideal for construction sites, manufacturing plants, warehouses, and industrial workplaces.By the end of this course, you'll have built a robust AI-powered PPE detection system, equipping you with valuable computer vision, deep learning, and web deployment skills.This course is designed for beginners and intermediate learners who want to develop AI-powered safety monitoring applications. No prior experience with Flask or YOLO models is required, as we will guide you step by step to create a real-world PPE detection system.Enroll today and start building your AI-Powered PPE Detection: Ensuring Workplace Safety in Real Time !
Who this course is for
Students looking to explore AI and its practical applications in Personal Protective Equipment (PPE) detection using YOLOv8 and NVIDIA NIM's Florence 2 model.
Working professionals aiming to upskill in AI, Machine Learning, and Computer Vision for workplace safety and compliance monitoring.
IoT and Safety Tech enthusiasts interested in integrating AI-driven PPE detection into smart monitoring systems for industrial and construction environments.
Aspiring developers who want to build a career in AI, machine learning, or computer vision, with a focus on real-world safety solutions.
Homepage:

Ukryta Zawartość

    Treść widoczna tylko dla użytkowników forum DarkSiders. Zaloguj się lub załóż darmowe konto na forum aby uzyskać dostęp bez limitów.




Ukryta Zawartość

    Treść widoczna tylko dla użytkowników forum DarkSiders. Zaloguj się lub załóż darmowe konto na forum aby uzyskać dostęp bez limitów.

No Password - Links are Interchangeable

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Dołącz do dyskusji

Możesz dodać zawartość już teraz a zarejestrować się później. Jeśli posiadasz już konto, zaloguj się aby dodać zawartość za jego pomocą.

Gość
Dodaj odpowiedź do tematu...

×   Wklejono zawartość z formatowaniem.   Usuń formatowanie

  Dozwolonych jest tylko 75 emoji.

×   Odnośnik został automatycznie osadzony.   Przywróć wyświetlanie jako odnośnik

×   Przywrócono poprzednią zawartość.   Wyczyść edytor

×   Nie możesz bezpośrednio wkleić grafiki. Dodaj lub załącz grafiki z adresu URL.

    • 1 Posts
    • 3 Views
    • 1 Posts
    • 6 Views
    • 1 Posts
    • 5 Views
    • 1 Posts
    • 6 Views
    • 1 Posts
    • 3 Views

×
×
  • Dodaj nową pozycję...

Powiadomienie o plikach cookie

Korzystając z tej witryny, wyrażasz zgodę na nasze Warunki użytkowania.