Skocz do zawartości

Aktywacja nowych użytkowników
Zakazane produkcje

  • X-Site.pl - Twoje miejsce w sieci
  • X-Site.pl - Twoje miejsce w sieci
  • X-Site.pl - Twoje miejsce w sieci
Courses2024

Udemy - Data Science Mastery - Journey into Machine Learning

Rekomendowane odpowiedzi

86d685200e734524f50fd90a721a7d2b.webp
Free Download Udemy - Data Science Mastery - Journey into Machine Learning
Last updated: 4/2025
Created by: Tech Career World
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Level: All | Genre: eLearning | Language: English + subtitle | Duration: 530 Lectures ( 49h 5m ) | Size: 15.6 GB

Learn Machine Learning, Data Science and Deep Learning with Python
What you'll learn
Gain proficiency in using Python libraries commonly used in data science and machine learning, such as NumPy, Pandas, and Matplotlib.
Learn how to clean and preprocess datasets, including handling missing data, outliers, and feature scaling.
Acquire knowledge of exploratory data analysis techniques to extract insights and patterns from data.
Master the fundamentals of statistical analysis and apply statistical methods to interpret and draw conclusions from data.
Understand the principles of machine learning and its various algorithms, such as regression, classification, and clustering.
Learn how to select appropriate machine learning models and techniques for different types of problems and datasets.
Develop skills in feature engineering and selection to enhance the performance of machine learning models.
Requirements
Just passion for learning!
Description
The Python for Data Science and Machine Learning course is designed to equip learners with a comprehensive understanding of Python programming, data science techniques, and machine learning algorithms. Whether you are a beginner looking to enter the field or a seasoned professional seeking to expand your skillset, this course provides the knowledge and practical experience necessary to excel in the rapidly growing field of data science.Course Objectives:1. Master Python Programming: Develop a strong foundation in Python programming, including syntax, data structures, control flow, and functions. Gain proficiency in using Python libraries such as NumPy, Pandas, and Matplotlib to manipulate and visualize data effectively.2. Data Cleaning and Preprocessing: Learn how to handle missing data, outliers, and inconsistent data formats. Acquire skills in data cleaning and preprocessing techniques to ensure the quality and reliability of datasets.3. Exploratory Data Analysis: Understand the principles and techniques of exploratory data analysis. Learn how to extract insights, discover patterns, and visualize data using statistical methods and Python libraries.4. Statistical Analysis: Gain a solid understanding of statistical concepts and techniques. Apply statistical methods to analyze data, test hypotheses, and draw meaningful conclusions.5. Machine Learning Fundamentals: Learn the foundations of machine learning, including supervised and unsupervised learning, regression, classification, and clustering. Understand the strengths and limitations of different machine learning algorithms.6. Machine Learning Implementation: Gain hands-on experience in implementing machine learning models using Python libraries such as scikit-learn. Learn how to train, evaluate, and optimize machine learning models.7. Feature Engineering and Selection: Develop skills in feature engineering to create meaningful and informative features from raw data. Learn techniques for feature selection to improve model performance and interpretability.8. Model Evaluation and Optimization: Learn how to assess the performance of machine learning models using techniques like cross-validation and evaluation metrics. Understand the importance of hyperparameter tuning and regularization for model optimization.9. Deep Learning Concepts: Explore the basics of deep learning, including neural networks, activation functions, and gradient descent optimization. Gain an understanding of deep learning architectures and their applications.10. Practical Deep Learning: Acquire practical experience in building and training neural networks using popular deep learning frameworks such as TensorFlow or PyTorch. Learn how to apply deep learning techniques to solve real-world problems.
Who this course is for
Aspiring data scientists and machine learning enthusiasts who have a basic understanding of Python programming.
Learners who want to acquire comprehensive knowledge and practical skills in Python, data science, and machine learning.
The course content is tailored to provide valuable insights and hands-on experience to individuals aiming to excel in data-driven problem-solving and analysis.
Homepage:

Ukryta Zawartość

    Treść widoczna tylko dla użytkowników forum DarkSiders. Zaloguj się lub załóż darmowe konto na forum aby uzyskać dostęp bez limitów.




Ukryta Zawartość

    Treść widoczna tylko dla użytkowników forum DarkSiders. Zaloguj się lub załóż darmowe konto na forum aby uzyskać dostęp bez limitów.

No Password - Links are Interchangeable

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Dołącz do dyskusji

Możesz dodać zawartość już teraz a zarejestrować się później. Jeśli posiadasz już konto, zaloguj się aby dodać zawartość za jego pomocą.

Gość
Dodaj odpowiedź do tematu...

×   Wklejono zawartość z formatowaniem.   Usuń formatowanie

  Dozwolonych jest tylko 75 emoji.

×   Odnośnik został automatycznie osadzony.   Przywróć wyświetlanie jako odnośnik

×   Przywrócono poprzednią zawartość.   Wyczyść edytor

×   Nie możesz bezpośrednio wkleić grafiki. Dodaj lub załącz grafiki z adresu URL.

    • 1 Posts
    • 3 Views
    • 1 Posts
    • 6 Views
    • 1 Posts
    • 5 Views
    • 1 Posts
    • 6 Views
    • 1 Posts
    • 3 Views

×
×
  • Dodaj nową pozycję...

Powiadomienie o plikach cookie

Korzystając z tej witryny, wyrażasz zgodę na nasze Warunki użytkowania.