Skocz do zawartości

Aktywacja nowych użytkowników
Zakazane produkcje

  • X-Site.pl - Twoje miejsce w sieci
  • X-Site.pl - Twoje miejsce w sieci
  • X-Site.pl - Twoje miejsce w sieci
bookbb

Fundamentals of Robust Machine Learning Handling Outliers and Anomalies in Data Science

Rekomendowane odpowiedzi

447c27e5d539aa053f4276fd244014c7.webp
Fundamentals of Robust Machine Learning: Handling Outliers and Anomalies in Data Science by Resve A. Saleh, Sohaib Majzoub, A. K. Md. Ehsanes Saleh
English | May 28th, 2025 | ISBN: 1394294379 | 409 pages | True PDF | 10.14 MB
An essential guide for tackling outliers and anomalies in machine learning and data science.

In recent years, machine learning (ML) has transformed virtually every area of research and technology, becoming one of the key tools for data scientists. Robust machine learning is a new approach to handling outliers in datasets, which is an often-overlooked aspect of data science. Ignoring outliers can lead to bad business decisions, wrong medical diagnoses, reaching the wrong conclusions or incorrectly assessing feature importance, just to name a few.
Fundamentals of Robust Machine Learning offers a thorough but accessible overview of this subject by focusing on how to properly handle outliers and anomalies in datasets. There are two main approaches described in the book: using outlier-tolerant ML tools, or removing outliers before using conventional tools. Balancing theoretical foundations with practical Python code, it provides all the necessary skills to enhance the accuracy, stability and reliability of ML models.
Fundamentals of Robust Machine Learning readers will also find:
* A blend of robust statistics and machine learning principles
* Detailed discussion of a wide range of robust machine learning methodologies, from robust clustering, regression and classification, to neural networks and anomaly detection
* Python code with immediate application to data science problems
Fundamentals of Robust Machine Learning is ideal for undergraduate or graduate students in data science, machine learning, and related fields, as well as for professionals in the field looking to enhance their understanding of building models in the presence of outliers.


Download Links

Ukryta Zawartość

    Treść widoczna tylko dla użytkowników forum DarkSiders. Zaloguj się lub załóż darmowe konto na forum aby uzyskać dostęp bez limitów.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Dołącz do dyskusji

Możesz dodać zawartość już teraz a zarejestrować się później. Jeśli posiadasz już konto, zaloguj się aby dodać zawartość za jego pomocą.

Gość
Dodaj odpowiedź do tematu...

×   Wklejono zawartość z formatowaniem.   Usuń formatowanie

  Dozwolonych jest tylko 75 emoji.

×   Odnośnik został automatycznie osadzony.   Przywróć wyświetlanie jako odnośnik

×   Przywrócono poprzednią zawartość.   Wyczyść edytor

×   Nie możesz bezpośrednio wkleić grafiki. Dodaj lub załącz grafiki z adresu URL.


×
×
  • Dodaj nową pozycję...

Powiadomienie o plikach cookie

Korzystając z tej witryny, wyrażasz zgodę na nasze Warunki użytkowania.