Skocz do zawartości

Rekomendowane odpowiedzi

  • Uplinker
Opublikowano
aad840328760ff2208ff4a421cbb66ce.webp
Free Download ZerotoMastery - Build a Simple Neural Network & Learn Backpropagation
Released 4/2025
MP4 | Video: h264, 1920x1080 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English | Duration: 38 Lessons ( 4h 34m ) | Size: 611 MB
Learn about backpropagation and gradient descent by coding your own simple neural network from scratch in Python - no libraries, just fundamentals. Ideal for aspiring Machine Learning Engineers, Data Scientists, and AI Specialists.

What you'll learn
Coding neural networks from scratch using only Python
What backpropagation is and how it helps machines learn
How to break down complicated math into simple, doable steps
The easiest way to understand gradients and why they matter
What's really happening when a machine makes predictions
How to train a smarter model by adjusting tiny details in code
This course strips neural networks to their fundamental core: math and raw Python.
You'll dive into the inner workings of backpropagation, gradient descent, and the math that powers modern neural networks. No pre-built frameworks, no black boxes. Just you, the math, and your code.
Step-by-step, you'll build neural networks by hand and implement them from scratch. From partial derivatives to weight updates, every concept is broken down and coded in Python (no libraries like PyTorch required!). If you're looking to truly understand how machine learning works-and prove it by building your own neural network-this course is your launchpad.
The course is broken down into three main sections
Introduction
Start by understanding the goals of the course and why backpropagation is central to modern machine learning. This section sets expectations and explains how mastering the math will give you a competitive edge.
Foundational Concepts and Simple Neural Network Implementation
Get hands-on with the theory. Learn how neural networks process data, calculate losses, and update weights using gradient descent. You'll manually compute everything-forward pass, gradients, and backpropagation-before coding a working network in Python.
Advanced Neural Network Implementation
Scale up your skills. This section walks you through implementing a deeper neural network with non-linear activation functions. You'll use advanced backpropagation techniques to train more complex models and understand how real-world neural networks are built from the ground up.
What Else Should I Know?
Homepage:

This is the hidden content, please




This is the hidden content, please

No Password - Links are Interchangeable

Dołącz do dyskusji

Możesz dodać zawartość już teraz a zarejestrować się później. Jeśli posiadasz już konto, zaloguj się aby dodać zawartość za jego pomocą.
Uwaga: Twój wpis zanim będzie widoczny, będzie wymagał zatwierdzenia moderatora.

Gość
Dodaj odpowiedź do tematu...

×   Wklejono zawartość z formatowaniem.   Usuń formatowanie

  Dozwolonych jest tylko 75 emoji.

×   Odnośnik został automatycznie osadzony.   Przywróć wyświetlanie jako odnośnik

×   Przywrócono poprzednią zawartość.   Wyczyść edytor

×   Nie możesz bezpośrednio wkleić grafiki. Dodaj lub załącz grafiki z adresu URL.

×
×
  • Dodaj nową pozycję...

Powiadomienie o plikach cookie

Korzystając z tej witryny, wyrażasz zgodę na nasze Warunki użytkowania.